organic papers

Received 1 September 2005 Accepted 19 September 2005

Online 21 September 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zuo-Liang Jing,* Ming Yu, Xin Chen and Qi-Liang Deng

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.034 wR factor = 0.094 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[(2,4-Dichlorobenzylidene)amino]-1,5dimethyl-2-phenyl-1,2-dihydropyrazol-3-one

The crystal structure of the title compound, $C_{18}H_{15}Cl_2N_3O$, shows that the Cl atoms take part in intermolecular $C-H\cdots Cl$ interactions.

Comment

The synthesis and crystal structures of Schiff base ligands derived from 4-aminoantipyrine, such as thenoyltrifluoroacetone and 4-hydroxy-3-methoxybenzaldehyde, have been reported (Yu *et al.*, 2002; Diao *et al.*, 2005). In the present study, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the central system (C7–C10/N1–N3/O1) is planar, with an r.m.s. deviation of fitted atoms of 0.0776 Å, and the dihedral angle with the phenyl ring (C13–C18) is 55.98 (6)°. The 2,4-dichlorobenzene group (C1–C7/C11/Cl2) is planar, with an r.m.s. deviation of fitted atoms of 0.0192 Å, and the dihedral angle with the central system is 24.25 (5)°. The Cl atoms participate in C–H···Cl interactions (Table 2).

Experimental

An anhydrous ethanol solution of 2,4-dichlorobenzaldehyde (1.75 g, 10 mmol) was added to an anhydrous ethanol solution of 4-amino-

Figure 1 A view of the title compound, with 30% probability displacement ellipsoids.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 2

Intermolecular hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

1,5-dimethyl-2-phenylpyrazolidin-3-one (2.03 g, 10 mmol), and the mixture was stirred at 350 K for 5 h under nitrogen. A yellow precipitate appeared. The product was isolated, recrystallized from ethanol and then dried *in vacuo* to give pure compound (I) in 78% yield. Bright-yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of (I).

Crystal data

C ₁₈ H ₁₅ Cl ₂ N ₃ O	$D_x = 1.426 \text{ Mg m}^{-3}$
$M_r = 360.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3316
a = 9.4236 (7) Å	reflections
b = 7.3711 (5) Å	$\theta = 2.9-25.3^{\circ}$
c = 24.5011 (18) Å	$\mu = 0.40 \text{ mm}^{-1}$
$\beta = 99.6930 \ (10)^{\circ}$	T = 294 (2) K
$V = 1677.6 (2) \text{ Å}^3$	Block, yellow
Z = 4	$0.44 \times 0.32 \times 0.24$ mm

2935 independent reflections

 $R_{\rm int} = 0.022$

 $\theta_{\rm max} = 25.0^\circ$

 $h = -11 \rightarrow 11$ $k = -8 \rightarrow 8$

 $l = -26 \rightarrow 29$

2235 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{min} = 0.802, T_{max} = 0.909$ 8814 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0444P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.3505P]
$wR(F^2) = 0.094$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2935 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-C2	1.735 (2)	N3-C7	1.281 (2)
Cl2-C4	1.742 (2)	N3-C8	1.390 (2)
N1-N2	1.406 (2)		
N2-N1-C10	108.80 (14)	C9-N2-C12	125.05 (16)
N2-N1-C13	120.67 (14)	N1-N2-C12	119.41 (15)
C10-N1-C13	122.58 (15)	C7-N3-C8	119.45 (15)
C9-N2-N1	107.46 (13)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7\cdots O1$	0.93	2.31	3.005 (2)	131
$C6-H6\cdots Cl1^{i}$	0.93	2.79	3.703 (2)	168

Symmetry code: (i) x, y + 1, z.

H atoms were included in calculated positions and refined using a riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic CH; C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl CH₃].

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science Fund of Tianjin University of Science and Technology (Grant No. 118181), which is gratefully acknowledged.

References

- Bruker (1999). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, C.-H., Fan, Z., Yu, M., Chen, X., Jing, Z.-L. & Deng, Q.-L. (2005). Acta Cryst. E61, 02322–02323.
- Sheldrick, G. M. (1997*a*). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Sheldrick G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Yu, M., Wang, J.-L. & Miao, F.-M. (2002). Acta Cryst. E58, o1182-o1184.